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We study the stochastic dynamics of doubly clamped micron-scale beams in a viscous fluid driven by
Brownian motion. We use a thermodynamic approach to compute the equilibrium fluctuations in beam dis-
placement that requires only deterministic calculations. From calculations of the autocorrelations and noise
spectra we quantify the beam dynamics by the quality factor and resonant frequency of the fundamental
flexural mode over a wide range of experimentally accessible geometries. We consider beams with uniform
rectangular cross section and explore the increased quality factor and resonant frequency as a baseline geom-
etry is varied by increasing the width, increasing the thickness, and decreasing the length. The quality factor is
nearly doubled by tripling either the width or the height of the beam. Much larger improvements are found by
decreasing the beam length, however this is limited by the appearance of additional modes of fluid dissipation.
Overall, the stochastic dynamics of the wider and thicker beams are well predicted by a two-dimensional
approximate theory beyond what may be expected based upon the underlying assumptions, whereas the shorter
beams require a more detailed analysis.
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I. INTRODUCTION

There is a growing need for fast and sensitive micron and
nanoscale sensors and actuators that operate in viscous fluid
environments. Many important technologies are based upon
the dynamics of small elastic beams in fluid �1–4�. If an
elastic beam is uniformly reduced in size it will become both
softer �the equivalent spring constant is reduced� and faster
�the fundamental frequency of oscillation increases�. This ad-
vantageous trend is often exploited �4�. However, in a fluid
environment the relative magnitude of viscous forces to in-
ertial forces becomes large resulting in a dramatic reduction
in the quality factor and resonant frequency of the fundamen-
tal mode of oscillation. For example, the dynamics of a
nanoscale cantilever in water can be overdamped �5�. Several
approaches have been proposed to overcome this difficulty
including the use of the higher order beam modes �1,6–10�,
nonlinear feedback control strategies for the external drive
�11,12�, by varying the cross-sectional geometry of long-thin
cantilevers that are driven externally �10�, and by embedding
the fluid inside the cantilever while it oscillates in vacuum
�13�. However, these approaches can be difficult to imple-
ment in practice and often require sophisticated measure-
ments and control electronics. In addition, for the strongly
damped dynamics under consideration here the mode of ac-
tuation directly affects the resulting quality factor and reso-
nant frequency �cf. �14��. In many applications a simpler
tactic is desirable to overcome the strong viscous damping.
In this paper we explore the variation in beam dynamics as a
function of its geometry. In particular, we quantify the sto-
chastic dynamics of doubly clamped beams with rectangular
cross section for a wide range of sizes and geometries includ-
ing short and wide beams that are not well described by
available analytical theory. Using numerical simulations for
the precise conditions of experiment we quantify the Brown-
ian driven dynamics of micron-scale beams in fluid and ex-

plore the physical origins of the fluid dissipation. These re-
sults determine the effectiveness of tailoring the beam
geometry to overcome the strong viscous damping.

We calculate the stochastic dynamics of the doubly
clamped beams �see Fig. 1� using the thermodynamic ap-
proach discussed in detail in Refs. �5,14�. The approach re-
quires only a single deterministic calculation of the fluid dis-
sipation that is used to compute the stochastic beam
displacement via the fluctuation-dissipation theorem. For a
doubly clamped beam the deterministic calculation is the
ring down of the beam due to the removal of a step point
force applied to the center of the beam. We emphasize that
the only assumptions in this result are that of classical dy-
namics and small deflections. Using three-dimensional, time-
dependent, finite element simulations for the precise geom-
etries of interest the stochastic dynamics is computed. In
particular, we calculate the autocorrelations and noise spectra
of equilibrium fluctuations in the beam displacement. The
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FIG. 1. A schematic of a doubly clamped beam used in the
numerical simulations with length L, width w, and height h with
uniform rectangular cross section. �a� The x-z plane of the beam in
fluid. The beam is supported by a rigid support of width w on each
side for the short-wide geometries to minimize the effects of the
bounding side walls. The beam is light gray and the two rigid sup-
ports are darker gray. �b� The y-z plane of the beam illustrating the
rectangular cross section. In our simulations the beam is immersed
in room-temperature water and we compute the stochastic dynamics
of the fundamental flexural mode driven by Brownian motion. In
the following figures the vertical displacement of the beam at
x=L /2 is referred to as z1�t� for thermally induced fluctuations and
Z1�t� for the deterministic ring-down simulations.
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basic approach has been validated both against analytics and
experimental measurement �5,14–17� and also used to study
the fluid-coupled motion of two atomic force microscope
cantilevers �18� and two nanoscale cantilevers �5,14�.

II. DISCUSSION

In many situations of technological and scientific interest,
such as atomic force microscopy, the elastic beams are long
and thin L�w�h where L is the length, w is the width, and
h is height of the beam. The fluid-solid interaction problem
describing the motion of a waving beam in fluid is very
difficult with analytical solutions available only under ideal-
ized conditions such as simple beam geometries and for
small deflections �19–22�. In the limit of small beam dis-
placements, a two-dimensional approximation for the fluid
flow over the beam is often used to determine the force in-
teractions with an Euler-Bernoulli beam. This approach has
been very successful in predicting the resulting beam dynam-
ics in a viscous fluid �20�. Furthermore, it has been shown
that replacing the rectangular beam cross section with that of
a cylinder of diameter equal to the width w yields small
errors on the order of several percent �19�. The flow field
generated by an oscillating cylinder is well known as well as
the forces acting on the surface of the cylinder �23,24�. These
approximations have led to insightful analytical expressions
describing the stochastic dynamics of beams in fluid �5,20�.
However, the validity and accuracy of these expressions re-
main unclear for the finite beam geometries often used in
experiment.

A. Analytical approach

In the limit of a long and thin beam, small displacements,
and using the two-dimensional approximation of an oscillat-
ing cylinder for the fluid flow, the noise spectrum of equilib-
rium fluctuations in displacement of the beam measured at
x=L /2 for the fundamental mode is given by �5�

G���

=
4kBT

k

1

�0

T0�̃�i�R0�̃�
��1 − �̃2�1 + T0�r�R0�̃���2 + ��̃2T0�i�R0�̃��2�

,

�1�

where � is the frequency of oscillation, �̃=� /�0 is the re-
duced frequency, �0 is the resonant frequency of the funda-
mental mode in vacuum, R0 is the frequency parameter
evaluated at �0, ���� is the hydrodynamic function, T0 is the
mass loading parameter, kB is Boltzmann’s constant, T is the
temperature, and k is the spring constant for the fundamental
mode. The frequency parameter is

R0 =
�0w2

4�
, �2�

and is a frequency based Reynolds number representing the
ratio of local inertia to viscous forces where � is the kine-
matic viscosity of the fluid. In our notation, the frequency
parameter R is evaluated at arbitrary frequency �, and Rf is
evaluated at � f. The mass loading parameter is

T0 =
�

4

� fw

�bh
�3�

and represents the ratio of the mass of a cylinder of fluid with
radius w /2 to the actual mass of the beam where � f is the
density of the fluid, and �b is the density of the beam. The
hydrodynamic function for an oscillating cylinder in a vis-
cous fluid is given by �23,24�

���� = 1 +
4iK1�− i�iR0�̃�

�iR0�̃K0�− i�iR0�̃�
, �4�

where K1 and K0 are Bessel functions, �r and �i are the real
and imaginary parts of �, respectively, and i=�−1.

The dynamics of a beam in fluid is not precisely equiva-
lent to that of a damped simple harmonic oscillator. For ex-
ample, both the mass and damping are frequency dependent.
The mass of the entrained fluid plus the mass of the beam is

mf��� = me�1 + T0�r�R0�̃�� , �5�

where me=�mb is the equivalent mass of the beam such that
the kinetic energy of this mass is equal to that of the funda-
mental mode and mb=�bLwh is the mass of the beam. For
the fundamental flexural mode of a doubly clamped beam
�=0.396. The viscous damping is

	 f��� = mcyl,e��i�R0�̃� , �6�

where mcyl,e=�mcyl is the equivalent mass of a cylinder of
fluid with diameter equal to w. As the frequency of oscilla-
tion increases the magnitude of mf decreases and the magni-
tude of 	 f increases.

The simple harmonic-oscillator approximation is conve-
nient to define commonly used diagnostics such as the qual-
ity factor Q and resonant frequency of the beam in fluid � f.
As a result of the frequency-dependent mass and damping,
the fundamental peak of the noise spectra is not well ap-
proximated as a Lorentzian for these strongly damped oscil-
lators and care must be taken when determining Q and � f.
The resonant frequency in fluid � f will be defined to be the
frequency which maximizes the noise spectrum in Eq. �1�.
The quality factor Q is then defined as the ratio of energy
stored by the potential and kinetic energy of the beam and
fluid to the energy dissipated by viscosity per oscillation
when evaluated at � f. This yields

Q �
mf�� f�� f

	 f�� f�
=

T0
−1 + �r�R0�̃ f�

�i�R0�̃ f�
. �7�

Given values of the nondimensional parameters R0 and
T0, Eqs. �1� and �7� directly yield the analytical predictions
for � f and Q. The variation in Q and � f with R0 and T0 are
shown in Fig. 2 over a large range of parameters. The quality
factor increases significantly as the frequency of oscillation
is increased and also increases as the mass loading decreases.
The resonant frequency of the beam when placed in fluid,
� f /�0, also increases with frequency of oscillation and with
a reduction in mass loading. The increase of � f /�0 with
respect to R0 is very rapid for R0
20 with only small
changes for higher frequencies, while the dependence upon
T0 results in a nearly uniform increase over the range shown.
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It is typical for R0	1 and T0	1 for many proposed micro-
scale applications in water. In this case the analytics predict
strongly damped dynamics with Q	2. For applications that
require a distinct peak to be measured this presents a signifi-
cant challenge.

Using Euler-Bernoulli beam theory �25� for a doubly
clamped beam these expressions can be written as a function
of geometry �L ,w ,h� which are often the experimentally rel-
evant parameters rather than R0 and T0. The relevant expres-
sions are

�0 =
11.2
�3

� E

�b

h

L2 , �8�

k = 16E
 h

L
�3

w , �9�

R0 =
2.8
�3

1

�
� E

�b

w

L
�2

h , �10�

where E is Young’s modulus. These expressions for T0 and
R0 together with Fig. 2 suggest that Q and � f increase by
reducing the length, increasing the width, or increasing the
height of the beam. However, the precise improvement is not
clear since the available theoretical predictions are only for
long and slender beams. In light of this we have performed
full time-dependent and three-dimensional finite element nu-
merical simulations �26� of a wide range of geometries to
determine precisely the stochastic dynamics.

B. Numerical approach

To compute the stochastic dynamics of the beams we use
the approach discussed in Refs. �5,14� and provide only the
essential details necessary for our discussion. The autocorre-
lation of equilibrium fluctuations in beam displacement are
given by the deterministic ring down of the beam to the
removal of a point step force applied at x=L /2 given by

F�t� = �F0 for t � 0

0 for t � 0,
 �11�

where t is time and F0 is the magnitude of the force. The
value of F0 is chosen for each simulation such that the beam
deflections remain small and, in this case, the results are
independent of its specific value. The autocorrelation of
equilibrium fluctuations in beam displacement is then given
by

�z1�0�z1�t�� = kBT
Z1�t�
F0

. �12�

We use lower case z1 to indicate stochastic displacement, and
upper case Z1 to indicate the deterministic ring-down mea-
sured at the center of the beam x=L /2. The noise spectrum
of fluctuations in beam displacement is given by

G��� = 4�
0



�z1�t�z1�0��cos��t�dt . �13�

The noise spectrum is used to determine � f and Q for the
numerical results. The resonant frequency � f is the fre-
quency maximizing G��� and the quality is given by

Q �
mf�� f�� f

	 f�� f�
=

k

4kBT
� fG�� f� . �14�

The right-hand side of Eq. �14� is found using mf�� f�
=k /� f

2 and using the peak value of the noise spectrum G�� f�
to determine the damping. The error in using the bulk mode
spring constant, as opposed to the dynamic spring constant
for the fundamental mode, is small and on the order of sev-
eral percent.

In summary, the numerical procedure is the following: �i�
compute Z�t� from a deterministic simulation of the ring
down of the beam due to the removal of a step force; �ii�
compute the autocorrelation of equilibrium fluctuations in
displacement using Eq. �12�; �iii� compute the noise spec-
trum using Eq. �13�; �iv� calculate diagnostics: � f is the fre-
quency that maximizes the noise spectrum, and Q is found
from Eq. �14�.

We have performed extensive numerical tests on doubly
clamped beams in vacuum and in fluid to ensure the accu-
racy of our calculations �27�. For each geometry explored we
have conducted numerical simulations over a range of spatial
and temporal discretizations to ensure the convergence of our
reported values for the quality factor and resonant frequency
of the fundamental mode in fluid. The required spatial reso-
lution depended significantly upon the geometry explored
with the short and wide beam geometries requiring higher
spatial resolution. Typically, we found that a time step �t

 P /15 was sufficient where P is the period of the funda-
mental mode in vacuum. We have also been careful to
choose the size of the overall simulation domain to be large
enough such that the bounding walls do not affect the results.
In our results, the bounding walls are always a distance of
15�s or greater from the beam surface where �s= �� /� f�1/2 is
the Stokes length for the fundamental mode in fluid.
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FIG. 2. �a� The predicted variation of the quality factor Q for the
stochastic displacement of a beam immersed in a viscous fluid with
respect to the nondimensional frequency parameter R0 and mass
loading parameter T0. �b� The predicted variation in the resonant
frequency in fluid � f with respect to R0 and T0. In both panels five
curves are shown for T0=0.5,1, 2, 4, 8. The bounding two curves
are labeled with the remaining curves in sequential order. R0 is
evaluated at the resonant frequency of the beam in vacuum. The
quality Q is determined by evaluating Eq. �7� at � f where � f is the
frequency that maximizes Eq. �1�.
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C. Results

As the baseline geometry we consider a doubly clamped
beam with length L�=15 �m, width w�=0.4 �m, and
height h�=0.1 �m. This geometry is similar to what has
been recently used in experiments demonstrating thermoelas-
tic actuation in vacuum and air �1�. Here, we are interested in
the beam dynamics in a viscous fluid and use water. This
geometry is referred to as case �1� in Table I and we consider
seven additional geometries which are chosen as systematic
variations in the baseline geometry �L� ,w� ,h��. Also shown
in Table I are the aspect ratios for the different geometries to
give an idea of the range of geometries used and also to give
some indication of the deviation from the ideal case of a long
and thin beam used in analytical predictions.

Table II illustrates the deviations in geometry when com-
pared with the baseline geometry of case 1. Also included are
the beam properties that can be determined independent of
the fluid dynamics which include the bulk spring constant k,
the frequency parameter in vacuum R0, and the mass loading

parameter T0. We have used finite element numerical simu-
lations of the beams in vacuum to determine the numerical
values of k and �0 for all of the geometries considered.
Given this information one can use the analytical expressions
to predict Q and � f which is illustrated in Fig. 2. From Table
II it is clear that over 4 orders of magnitude of spring con-
stant, over 3 orders of magnitude of frequency parameter,
and over 1 order of magnitude of the mass loading parameter
are considered by the chosen variations in geometry.

We first quantify the stochastic dynamics of the baseline
geometry. The numerical results for the autocorrelation of
equilibrium fluctuations in beam displacement are shown in
Fig. 3�a�, and the noise spectrum is shown in Fig. 3�b�. In
each figure the baseline geometry is labeled w�.

The autocorrelation curves are normalized using k /kBT
where the value of k for each case is given in Table II. The
noise spectra have been normalized using the peak value
G�� f�. These figures illustrate that the dynamics of this
micron-scale beam in water are strongly damped. The value
of the quality and resonant frequency in fluid using our nu-

TABLE I. The eight geometries of doubly clamped beams used in the numerical simulations. Case �1� is
the baseline geometry and the remaining cases are variations of this geometry. The beam aspect ratios are
L /w, L /h, and w /h. Cases �2�–�3� are variations in width, cases �4�–�5� are variations in height, and cases
�6�–�8� are variations in length. The beams are composed of silicon with Young’s modulus E=210 GPa,
density �b=3100 kg /m3, and the fluid is water with � f =997 kg /m3, �=8.56�10−4 kg /ms. All simulations
are performed at room temperature with T=300 K.

Case
L

��m�
w

��m�
h

��m� L /w L /h w /h

�1� 15 0.4 0.1 37.5 150 4

�2� 15 0.8 0.1 18.75 150 8

�3� 15 1.2 0.1 12.5 150 12

�4� 15 0.4 0.2 37.5 75 2

�5� 15 0.4 0.3 37.5 50 1.33

�6� 5 0.4 0.1 12.5 50 4

�7� 1 0.4 0.1 2.5 10 4

�8� 0.4 0.4 0.1 1 4 4

TABLE II. The geometry variations with respect to the baseline geometry given by case �1� with
�L� ,w� ,h��. Cases �2� and �3� explore increasing width, cases �4� and �5� explore increasing thickness, and
cases �6�–�8� explore decreasing length. Also shown are the spring constant k, the frequency based Reynolds
number in vacuum R0, and the mass loading parameter T0. The values of k and R0 are determined using finite
element simulations.

Case L /L� w /w� h /h�
k

�N /m� R0 T0

�1� 1 1 1 0.40 1.08 1.01

�2� 1 2 1 0.83 4.55 2.02

�3� 1 3 1 1.21 10.19 3.03

�4� 1 1 2 3.19 2.17 0.51

�5� 1 1 3 10.82 3.19 0.34

�6� 1/3 1 1 10.92 10.20 1.01

�7� 1/15 1 1 1178.95 231.55 1.01

�8� 1/37.5 1 1 11413.04 1146.08 1.01
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merical results are given in Table III and are Q=0.80 and
� f /�0=0.22. Also shown are the predictions from analytics
using Eqs. �1� and �7� which yield Q†=0.68 and � f /�0

†

=0.22. The analytical predictions are quite accurate for the
frequency drop while under predicting the quality factor for
this geometry.

Next we consider the variation in the stochastic dynamics
of the beam as a function of the beam width. In particular,
we double and triple the beam width w while holding L and
h constant. For increasing width the frequency parameter in-
creases as R0	w2 while the mass loading parameter in-
creases as T0	w. This has the effect of increasing the fluid
inertia while simultaneously increasing the mass loading.
These two counteracting effects suggest the increase in Q
and � f will only be moderate. The autocorrelations and noise
spectra from numerical simulations are shown in Fig. 3. The
autocorrelation results exhibit both positively and negatively
correlated results as expected with the dynamics becoming
more underdamped as the width is increased. The noise spec-
tra clearly illustrate that the peak value shifts to higher fre-
quency and that the peak itself becomes sharper as the width
increases. For case 1, the noise spectra have significant con-
tributions at low frequency whereas for case 3 the noise
spectra have become more symmetric with a Lorentzian
shape.

Values for the quality and resonant frequency in fluid
from our numerical results are given in Table III. When com-

pared to the quality for the baseline geometry Q�, the in-
crease in quality is Q /Q�=1.29 for doubling the width, and
Q /Q�=1.71 for tripling the width. The quality increases with
increasing width however the magnitude of the quality is
small indicating that the beam dynamics remains strongly
damped. The increase in the value of � f /�0 is slightly less
than what is found for Q. A comparison of our numerical
values of � f and Q with the analytical predictions of Eqs. �1�
and �7� is shown in Fig. 4. The circles are the results from
our numerical simulations and the dashed line is the analyti-
cal prediction where �=w /w� and w� is the width of the
baseline geometry. It is clear that the analytical predictions
remain quite accurate over this range. This includes case 3
where L /w�w /h�12 and L /h�1. Figure 4 indicates that
the magnitude of the increase in quality with increasing
width is quite moderate. Furthermore, the increase in � f is
quite small and becomes nearly flat at � f /�0�0.24 for �
�2.

Next we consider the variation in beam dynamics as the
height is increased. We consider the cases where h is doubled
and tripled while the L and w are held constant. As the height
is increased the frequency parameter increases as R0	h
whereas the mass loading parameter decreases as T0	h−1.
These two effects both contribute to increasing Q and � f.
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z 1(
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FIG. 3. The autocorrelations and noise spectra of equilibrium
fluctuations in beam displacement as a function of beam width from
numerical results: case 1 �w��, case 2 �2w��, case 3 �3w��. �a� The
autocorrelations, the results have been normalized using k / �kBT� for
each case. �b� The noise spectra, the results have been normalized
by the peak value for each case, G�� f�.

TABLE III. The stochastic dynamics of the beams in fluid. Shown is the frequency based Reynolds
number in fluid Rf, the reduction in the resonant frequency � f /�0, and the quality factor Q. Also shown is the
improvement of the quality with respect to that of case �1� given by Q�=0.8. Q† and � f /�0

† are the results
predicted from analytical theory using Eqs. �1� and �7�.

Case Rf � f /�0 Q Q /Q� � f /�0
† Q†

�1� 0.23 0.22 0.80 1.0 0.22 0.68

�2� 1.08 0.24 1.03 1.29 0.27 1.05

�3� 2.91 0.29 1.36 1.71 0.28 1.31

�4� 1.00 0.46 1.28 1.61 0.50 1.35

�5� 2.11 0.66 2.01 2.52 0.66 2.13

�6� 4.80 0.47 1.57 1.97 0.51 2.04

�7� 164.46 0.71 6.13 7.69 0.67 9.22

�8� 885.19 0.77 5.90 7.40 0.69 20.24
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FIG. 4. �Color online� Comparison of numerical results with
analytical predictions for Q and � f as a function of width w and
height h. The circles �blue� are for increasing width and the squares
�red� are for increasing height. The solid line is the analytical pre-
diction for increasing width and the dashed line is the analytical
prediction for increasing height. To place all values on a single plot
�=w /w� for the varying width results and �=h /h� for the varying
height results.
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The normalized autocorrelations and noise spectra from our
numerical simulations are shown in Fig. 5. The results
clearly indicate an increasing value of both � f and Q and
numerical values are given in Table III. The relative increase
in quality is Q /Q�=1.61 when the height is doubled, and
Q /Q�=2.52 when the height is tripled. The increase in
� f /�0 follows a similar trend.

A comparison of our numerical results with the predic-
tions of theory is shown in Fig. 4 using �=h /h�. The square
symbols are the numerical results and the solid line is the
analytical prediction. It is clear that the increases in Q and � f
are much larger for variations in height when compared to
what was found for increases in beam width. The analytical
predictions remain quite accurate and insightful over the
range of aspect ratios explored by varying the beam height.
We highlight that this includes case 5 where w /h�1.

The last case we consider is decreasing the beam length
while holding the width and height constant. In this case
the frequency parameter increases rapidly as R0	L−2

whereas T0 remains constant. The autocorrelations and noise
spectra are shown in Fig. 6 which illustrate a significant in-
crease in resonant frequency and quality. From Fig. 6�a� the
results for the most extreme geometry explored, L� /37.5,
clearly show the influence of higher harmonics. The numeri-
cal values of Q and � f from our numerical results are given
Table III. For case 8 where L /L�=37.5 the increase in quality
is Q /Q�=7.4 and the reduction in the resonant frequency
when compared to its value in vacuum is � f /�0=0.77 indi-
cating significant changes are possible by changing the beam
length.

The analytical predictions given in Table III show signifi-
cant deviations from our numerical results. This is also illus-
trated in Fig. 7 where the triangles are the numerical results
and the solid lines are the analytical predictions. For case 6
�L /w=12.5� the analytical predictions are quite accurate.
However, for case 7 �L /w=2.5� and case 8 �L /w=1� the
analytical predictions over predict Q and under predict
� f /�0. The approximation of using the fluid flow from an
infinite two-dimensional oscillating cylinder is no longer
well justified. The numerical results suggest the presence of
additional modes of fluid dissipation that are not captured in
the two-dimensional theory.

To explore this further we quantify the fluid motion
around the beam in the deterministic numerical simulations
where the beam rings down upon the removal of a step force.
Figures 8 and 9 illustrate the magnitude of the fluid velocity
in the transverse uz and axial ux directions, respectively. The
velocities are plotted along a line beginning at
�0.0,0.0,0.01 �m� and ending at �L ,0.0,0.01 �m� for all
cases. In our notation the fluid velocity in the �x ,y ,z� direc-
tions is �ux ,uy ,uz�, see Fig. 1 for the definition of the coor-
dinate directions �x ,y ,z�. The velocities are shown at the
time when the velocity of the beam is at its maximum value
which occurs when the center of the beam crosses z=0 the
first time during its ring down. The maximum value of uz at
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this time is labeled u0 and is used to normalize both the
transverse and axial velocities. The axial direction is normal-
ized by the length so that all cases can be represented on the
same figure.

Figure 8 shows the transverse fluid velocity uz for cases
1–8. The baseline geometry �dashed line� and cases 2–7
�solid lines� collapse onto a single curve with a shape similar
to that of the fundamental mode of a doubly clamped beam.
Case 8 differs significantly with a much sharper peak indi-
cating that its dynamics are quite different which is expected
since this geometry is substantially different than the others.

Figure 9�a� illustrates the normalized axial velocities ux as
the beam width and height are varied. In the approximation
of a two-dimensional flow the axial velocity is identically
zero and any deviations from this in the numerical results
indicate fluid dynamics not considered in the analytical pre-
dictions. The bimodal shape of the curves is expected from
the symmetry of the fundamental mode. For x�L /2 the
axial fluid velocity is positive and for x�L /2 it is negative.
The baseline geometry is shown as the dashed line and has a
negligible axial fluid velocity. At its maximum value it is
only 	2.5% of the maximum transverse velocity u0. A simi-
lar trend is found for cases 2–5. As the width or height is
increased the relative magnitude of the axial velocities in-
creases. It is expected that if larger values of the width or
height were computed the axial velocities would become sig-
nificant and at this point the analytical predictions would
show large deviations.

Figure 9�b� shows the relative value of the axial velocities
as the length of the beam is decreased. The baseline geom-
etry is included for reference as the dashed line. It is clear
that the axial velocities are now quite significant and range
from 10% to 40% of u0. The axial velocities do not vanish at
x=0,L for cases 7 and 8 because these beams are held by
rigid supports �see Fig. 1� and the lateral side walls of the
numerical domain are distant. The axial velocities result in
fluid dissipation not accounted for in the two-dimensional

theory and contribute significantly to the lower values of Q
found in the numerical simulations. Furthermore, � f from the
numerical simulations is larger than the analytical predic-
tions. The added mass in the simulations is smaller than the
predicted values and this reduction is a direct result of the
three-dimensionality of the fluid flow. The maximum value
of the relative axial velocity does not follow a monotonic
trend with L because as the length becomes small the precise
nature of the beam dynamics varies in a complicated manner
which directly affects the fluid motion and therefore the fluid
dissipation. In fact, the smallest beam L� /37.5 has an aspect
ratio of L /w=1 and is better described as a plate undergoing
complicated dynamics as indicated by the presence of higher
mode effects in Fig. 6�a�. Overall, our results suggest that the
relative magnitude of the axial velocity can be used to indi-
cate the applicability of the two-dimensional theory.

In many microscale technologies the ability to sense small
forces is important and therefore a small spring constant is
desirable. In light of this, the improved performance, as mea-
sured by increased values of Q and � f with increasing w,
increasing h, or decreasing L all come at the price of reduced
force sensitivity. Using Eq. �9� to estimate k yields its depen-
dence upon geometry and the magnitude of the improved
performance follows the same trend as increasing k. Overall,
these tradeoffs would need to be balanced in a particular
application.

III. CONCLUSIONS

The stochastic dynamics of micron and nanoscale elastic
beams can be directly quantified using deterministic numeri-
cal computations for the precise geometries and conditions
of experiment. We have shown that the geometry of doubly
clamped beams can be tailored to overcome the strong fluid
damping that occurs for small scale systems in a viscous
fluid. Our numerical exploration has been used to build
physical insights into the stochastic dynamics and to place
realistic bounds upon the applicability of the two-
dimensional theory. Overall, we find that the two-
dimensional theory is quite accurate far beyond what may
have been expected based upon the underlying assumptions.
When deviations do occur a significant factor is fluid veloci-
ties in the axial direction resulting in increased dissipation
and a lower added mass. It is anticipated that these results
will be useful in guiding the development of future experi-
ments by providing the basis for predictions that cover a
wide range of geometries. Furthermore, our results provide
insight into the development of accurate theoretical models
valid for the finite geometries used in experiment.
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